Finding Average Velocity from a Given Graph:

Problem

The position versus time for a certain particle moving along the x axis is shown. Find the average velocity in the time intervals (a) 0 to $2 s$, (b) 0 to $4 s$, (c) $2 s$ to 4 s, (d) $4 s$ to $7 s$, and (e) 0 to $8 s$

Finding Average Velocity from a Given Graph:

Solution:

(a) From $t_{i}=0$ to $t_{f}=2 s$: $x_{i}=0, x_{f}=10 \mathrm{~m}$

$$
v_{\text {avg. }}=\frac{10 m-0}{(2-0) s}=+5 m / s
$$

Finding Average Velocity from a Given Graph:

Solution:

$$
v_{a v g}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

(b) From $t_{i}=0$ to $t_{f}=4 \mathrm{~s}: x_{i}=0, x_{f}=5 \mathrm{~m}$

$$
v_{a v g}=\frac{5 m-0}{(4-0) s}=+1.25 m / s
$$

Finding Average Velocity from a Given Graph:

Solution:

$$
v_{a v g}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

(c) From $t_{i}=2 s$ to $t_{f}=4 s$:

$$
x_{i}=10 \mathrm{~m}, \quad x_{f}=5 \mathrm{~m}
$$

$$
v_{\text {avg. }}=\frac{5 m-10 m}{(4-2) s}=-2.5 m / s
$$

Finding Average Velocity from a Given Graph:

Solution:

$$
v_{\text {avg. }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

(d) From $t_{i}=4 \mathrm{~s}$ to $t_{f}=7 \mathrm{~s}$:

$$
\begin{array}{r}
x_{i}=5 m, \quad x_{f}=-5 m \\
v_{\text {avg. }}=\frac{-5 m-5 m}{(7-4) s}=-3.33 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Finding Average Velocity from a Given Graph:

Solution:

(e) From $t_{i}=0$ to $t_{f}=8 \mathrm{~s}$:

$$
\begin{aligned}
& x_{i}=0, \quad x_{f}=0 \\
v_{\text {avg }} & =\frac{0-0}{(8-0) s}=0
\end{aligned}
$$

Finding Average Velocity from a Given Graph:

Exercise:
Find average velocity in the time intervals
(f) $t_{i}=4 \mathrm{~s}$ to $t_{f}=5 \mathrm{~s}$
(g) $t_{i}=5 \mathrm{~s}$ to $t_{f}=7 \mathrm{~s}$
(h) $t_{i}=7 \mathrm{~s}$ to $t_{f}=8 \mathrm{~s}$

The direction of velocity is along x axis (Due east in the shown case)

Speedometer reads magnitude of velocity (speed) $120 \mathrm{~km} / \mathrm{h}$

One Dimensional Motion: Instantaneous Velocity

Instantaneous Velocity $v=v_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}$

One Dimensional Motion: Instantaneous Velocity

Instantaneous Velocity $v=v_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \frac{d x}{d t}$

Speedometer reads
magnitude of velocity
(speed) of zero

One Dimensional Motion: Instantaneous Velocity

Instantaneous Velocity $v=v_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}$

Speedometer reads magnitude of velocity
(speed) $160 \mathrm{~km} / \mathrm{h}$

One Dimensional Motion: Instantaneous Velocity

Different Instantaneous Velocities

Speedometer reads magnitude of velocity (speed) 120 km/h

Speedometer reads magnitude of velocity (speed) $100 \mathrm{~km} / \mathrm{h}$

Speedometer reads
magnitude of velocity magnitude of velocity
(speed) of zero

(speed) $160 \mathrm{~km} / \mathrm{h}$

NonUniform Motion: velocities of the car at different times

One Dimensional Motion: NonUniform Motion

Position	$x-t$ graph	Particle's Motion
A	Large positive slope $(\Delta x / \Delta t)$ $v_{x}>0$	Moving fast in +ve x - direction

Determining velocity from a graph

One Dimensional Motion: NonUniform Motion

Position	$x-t$ graph	Particle's Motion
A	Large positive slope $(\Delta x / \Delta t)$ $v_{x}>0$	Moving fast in +ve x - direction
B	small positive slope $v_{x}>0$	moving in +ve x - direction slower than A

Determining velocity from a graph

One Dimensional Motion: NonUniform Motion

Position	x - t graph	Particle's Motion
A	Large positive slope $(\Delta x / \Delta t)$ $v_{x}>0$	Moving fast in +ve x - direction
B	small positive slope $v_{x}>0$	moving in $+v e x$ - direction slower than A
C	negative slope $v_{x}<0$	moving in $-v e x-$ direction

Determining velocity from a graph

One Dimensional Motion: NonUniform Motion

Position	x - t graph	Particle's Motion
A	Large positive slope $(\Delta x / \Delta t)$ $v_{x}>0$	Moving fast in +ve x - direction
B	small positive slope $v_{x}>0$	moving in +ve x - direction slower than A
C	negative slope $v_{x}<0$	moving in -ve x - direction
D	Larger negative slope $v_{x}<0$	moving in -ve $x-$ direction faster than C

Determining velocity from a graph

One Dimensional Motion: NonUniform Motion

Position	$x-t$ graph	Particle's Motion
A	Large positive slope $(\Delta x / \Delta t)$ $v_{x}>0$	Moving fast in +ve x - direction
B	small positive slope $v_{x}>0$	moving in +ve x - direction slower than A
C	negative slope $v_{x}<0$	moving in -ve x - direction
D	Larger negative slope $v_{x}<0$	moving in -ve $x-$ direction faster than C
E	negative slope $v_{x}<0$	moving in -ve $x-$ direction slower than D

Determining velocity from a graph

One Dimensional Motion: NonUniform Motion

Position	$x-t$ graph	Particle's Motion
A	Large positive slope $(\Delta x / \Delta t)$ $v_{x}>0$	Moving fast in +ve x - direction
B	small positive slope $v_{x}>0$	moving in $+v e ~$ m- direction slower than A
C	negative slope $v_{x}<0$	moving in -ve $x-$ direction
D	Larger negative slope $v_{x}<0$	moving in -ve $x-$ direction faster than C
E	negative slope $v_{x}<0$	moving in -ve $x-$ direction slower than D
F	Smaller negative slope $v_{x}<0$	moving in -ve x - direction slower than E

Determining velocity from a graph

