The position versus time for a certain particle moving along the x axis is shown. Find the average velocity in the time intervals (a) 0 to 2 s, (b) 0 to 4 s, (c) 2 s to 4 s, (d) 4 s to 7 s, and (e) 0 to 8 s



Problem



$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

(a) From 
$$t_i = 0$$
 to  $t_f = 2 s$ :  $x_i = 0$ ,  $x_f = 10m$ 

$$v_{avg.} = \frac{10m - 0}{(2 - 0)s} = +5m/s$$

, or 5 m/s due east





$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

(b) From 
$$t_i = 0$$
 to  $t_f = 4 \ s: x_i = 0, x_f = 5m$ 

$$v_{avg} = \frac{5m - 0}{(4 - 0)s} = +1.25m/s$$

, or 1.25 m/s due east





$$v_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

(c) From 
$$t_i = 2 s$$
 to  $t_f = 4 s$ :  
 $x_i = 10 m$ ,  $x_f = 5 m$ 

$$v_{avg.} = \frac{5m - 10m}{(4 - 2)s} = -2.5m/s$$
, or 2.5 m/s due west





$$v_{avg.} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

(d) From 
$$t_i = 4 \ s \ to$$
  $t_f = 7 \ s$ :  
 $x_i = 5 \ m$ ,  $x_f = -5 \ m$ 

$$v_{avg.} = \frac{-5m - 5m}{(7 - 4)s} = -3.33m / s$$
, or 3.33 m/s due west





$$v_{avg.} = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

(e) From 
$$t_i = 0$$
 to  $t_f = 8$  s:  
 $x_i = 0$ ,  $x_f = 0$ 

$$v_{avg} = \frac{0-0}{(8-0)s} = 0$$





Find average velocity in the time intervals

(f) 
$$t_i = 4 \ s \ to \ t_f = 5 \ s$$
  
(g)  $t_i = 5 \ s \ to \ t_f = 7 \ s$   
(h)  $t_i = 7 \ s \ to \ t_f = 8 \ s$ 



dr

Definition (in3-D): 
$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \frac{dr}{dt}$$

$$(\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$$

 $\Delta \vec{r}$ 

Speedometer reads magnitude of velocity (speed)120 *km/h* 

In 1-D its magnitude is simply written as follows:  $v = v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ 

The direction of velocity is along xaxis (Due east in the shown case)



Instantaneous Velocity  $v = v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ 



Speedometer reads magnitude of velocity (speed)100 *km/h* 



By Prof. Rashad Badran



By Prof. Rashad Badran

Instantaneous Velocity 
$$v = v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$





 $\mathcal{B}_{y}$  Prof. Rashad Badran

### **Different Instantaneous Velocities**



By Prof. Rashad Badran



| Position | x-t graph                                                    | Particle's Motion                  |
|----------|--------------------------------------------------------------|------------------------------------|
| A        | Large positive slope<br>$(\Delta x / \Delta t)$<br>$v_x > 0$ | Moving fast in +ve x-<br>direction |
|          |                                                              |                                    |
|          |                                                              |                                    |
|          |                                                              |                                    |
|          |                                                              |                                    |
|          |                                                              |                                    |



| Position | x-t graph                          | Particle's Motion                              |
|----------|------------------------------------|------------------------------------------------|
| А        | Large positive slope               | Moving fast in +ve x-                          |
|          | $(\Delta x/\Delta t)$<br>$v_x > 0$ | direction                                      |
| В        | small positive slope<br>$v_x > 0$  | moving in +ve x-<br>direction slower than<br>A |
|          |                                    |                                                |
|          |                                    |                                                |
|          |                                    |                                                |
|          |                                    |                                                |



| Position | x-t graph                                                    | Particle's Motion                              |
|----------|--------------------------------------------------------------|------------------------------------------------|
| A        | Large positive slope<br>$(\Delta x / \Delta t)$<br>$v_x > 0$ | Moving fast in +ve x-<br>direction             |
| В        | small positive slope<br>$v_x > 0$                            | moving in +ve x-<br>direction slower than<br>A |
| С        | negative slope<br>$v_x < 0$                                  | moving in -ve x-<br>direction                  |
|          |                                                              |                                                |
|          |                                                              |                                                |
|          |                                                              |                                                |



| Position | x-t graph                                                    | Particle's Motion                              |
|----------|--------------------------------------------------------------|------------------------------------------------|
| A        | Large positive slope<br>$(\Delta x / \Delta t)$<br>$v_x > 0$ | Moving fast in +ve x-<br>direction             |
| В        | small positive slope<br>$v_x > 0$                            | moving in +ve x-<br>direction slower than<br>A |
| С        | negative slope<br>$v_x < 0$                                  | moving in -ve x-<br>direction                  |
| D        | Larger negative slope $v_x < 0$                              | moving in -ve x-<br>direction faster than C    |
|          |                                                              |                                                |
|          |                                                              |                                                |



t(s)

50

## **One Dimensional Motion:** NonUniform Motion

| Position | x-t graph                                                  | Particle's Motion                                     |
|----------|------------------------------------------------------------|-------------------------------------------------------|
| A        | Large positive slope<br>$(\Delta x/\Delta t)$<br>$v_x > 0$ | Moving fast in +ve x-<br>direction                    |
| В        | small positive slope $v_x > 0$                             | moving in +ve x-<br>direction slower than<br>A        |
| С        | negative slope<br>$v_x < 0$                                | moving in -ve x-<br>direction                         |
| D        | Larger negative slope $v_x < 0$                            | moving in -ve x-<br>direction faster than C           |
| E        | negative slope<br>$v_x < 0$                                | moving in <i>-ve x-</i><br>direction slower than<br>D |
|          |                                                            |                                                       |

#### **Determining velocity from a graph** x(m)60 B C 40 $\Delta x$ A 28 *⁻∆t* D $\left( \right)$ -20 F -40 -60

30

40

10

20

| Position | x-t graph                                                | Particle's Motion                                      |
|----------|----------------------------------------------------------|--------------------------------------------------------|
| А        | Large positive slope<br>$(\Delta x / \Delta t)$<br>v > 0 | Moving fast in +ve x-<br>direction                     |
| В        | small positive slope<br>$v_x > 0$                        | moving in +ve x-<br>direction slower than<br>A         |
| С        | negative slope<br>$v_x < 0$                              | moving in -ve x-<br>direction                          |
| D        | Larger negative slope $v_x < 0$                          | moving in -ve x-<br>direction faster than C            |
| E        | negative slope<br>$v_x < 0$                              | moving in <i>-ve x</i> -<br>direction slower than<br>D |
| F        | Smaller negative slope $v_x < 0$                         | moving in <i>-ve x</i> -<br>direction slower than<br>E |

